PaperHub

为您找到 32,993 篇相关研究

10.0
4

Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?

Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning performance of large language models (LLMs), particularly in mathematics and programming tasks. It is widely believed that, similar to how traditional RL helps agents to explore and learn new strategies, RLVR enables LLMs to continuously self-improve, thus acquiring novel reasoning abilities that exceed the capacity of the corresponding base models. In this study, we take a critical look at \textit{the current state of RLVR} by systematically probing the reasoning capability boundaries of RLVR-trained LLMs across diverse model families, RL algorithms, and math/coding/visual reasoning benchmarks, using pass@\textit{k} at large \textit{k} values as the evaluation metric. While RLVR improves sampling efficiency towards the correct path, we surprisingly find that current training does \emph{not} elicit fundamentally new reasoning patterns. We observe that while RLVR-trained models outperform their base models at smaller values of $k$ (\eg, $k$=1), base models achieve higher pass@$k$ score when $k$ is large. Moreover, we observe that the reasoning capability boundary of LLMs often narrows as RLVR training progresses. Further coverage and perplexity analysis shows that the reasoning paths generated by RLVR models are already included in the base models' sampling distribution, suggesting that their reasoning abilities originate from and are \textit{bounded} by the base model. From this perspective, treating the base model as an upper bound, our quantitative analysis shows that six popular RLVR algorithms perform similarly and remain far from optimal in fully leveraging the potential of the base model. In contrast, we find that distillation can introduce new reasoning patterns from the teacher and genuinely expand the model’s reasoning capabilities. Taken together, our findings suggest that current RLVR methods have not fully realized the potential of RL to elicit genuinely novel reasoning abilities in LLMs. This underscores the need for improved RL paradigms—such as continual scaling and multi-turn agent-environment interaction—to unlock this potential.

NeurIPS 2025Oral
Yang Yue et al.
10.0
4

Scaling In-the-Wild Training for Diffusion-based Illumination Harmonization and Editing by Imposing Consistent Light Transport

Diffusion-based image generators are becoming unique methods for illumination harmonization and editing. The current bottleneck in scaling up the training of diffusion-based illumination editing models is mainly in the difficulty of preserving the underlying image details and maintaining intrinsic properties, such as albedos, unchanged. Without appropriate constraints, directly training the latest large image models with complex, varied, or in-the-wild data is likely to produce a structure-guided random image generator, rather than achieving the intended goal of precise illumination manipulation. We propose Imposing Consistent Light (IC-Light) transport during training, rooted in the physical principle that the linear blending of an object's appearances under different illumination conditions is consistent with its appearance under mixed illumination. This consistency allows for stable and scalable illumination learning, uniform handling of various data sources, and facilitates a physically grounded model behavior that modifies only the illumination of images while keeping other intrinsic properties unchanged. Based on this method, we can scale up the training of diffusion-based illumination editing models to large data quantities (> 10 million), across all available data types (real light stages, rendered samples, in-the-wild synthetic augmentations, etc), and using strong backbones (SDXL, Flux, etc). We also demonstrate that this approach reduces uncertainties and mitigates artifacts such as mismatched materials or altered albedos.

ICLR 2025Oral
Lvmin Zhang et al.
9.5
4

Safety Alignment Should be Made More Than Just a Few Tokens Deep

The safety alignment of current Large Language Models (LLMs) is vulnerable. Simple attacks, or even benign fine-tuning, can jailbreak aligned models. We note that many of these vulnerabilities are related to a shared underlying issue: safety alignment can take shortcuts, wherein the alignment adapts a model's generative distribution primarily over only its very first few output tokens. We unifiedly refer to this issue as shallow safety alignment. In this paper, we present case studies to explain why shallow safety alignment can exist and show how this issue universally contributes to multiple recently discovered vulnerabilities in LLMs, including the susceptibility to adversarial suffix attacks, prefilling attacks, decoding parameter attacks, and fine-tuning attacks. The key contribution of this work is that we demonstrate how this consolidated notion of shallow safety alignment sheds light on promising research directions for mitigating these vulnerabilities. We show that deepening the safety alignment beyond the first few tokens can meaningfully improve robustness against some common exploits. We also design a regularized fine-tuning objective that makes the safety alignment more persistent against fine-tuning attacks by constraining updates on initial tokens. Overall, we advocate that future safety alignment should be made more than just a few tokens deep.

ICLR 2025Oral
Xiangyu Qi et al.
9.4
4

An analytic theory of creativity in convolutional diffusion models

We obtain an analytic, interpretable and predictive theory of creativity in convolutional diffusion models. Indeed, score-matching diffusion models can generate highly original images that lie far from their training data. However, optimal score-matching theory suggests that these models should only be able to produce memorized training examples. To reconcile this theory-experiment gap, we identify two simple inductive biases, locality and equivariance, that: (1) induce a form of combinatorial creativity by preventing optimal score-matching; (2) result in fully analytic, completely mechanistically interpretable, local score (LS) and equivariant local score (ELS) machines that, (3) after calibrating a single time-dependent hyperparameter can quantitatively predict the outputs of trained convolution only diffusion models (like ResNets and UNets) with high accuracy (median $r^2$ of $0.95, 0.94, 0.94, 0.96$ for our top model on CIFAR10, FashionMNIST, MNIST, and CelebA). Our model reveals a {\it locally consistent patch mosaic} mechanism of creativity, in which diffusion models create exponentially many novel images by mixing and matching different local training set patches at different scales and image locations. Our theory also partially predicts the outputs of pre-trained self-attention enabled UNets (median $r^2 \sim 0.77$ on CIFAR10), revealing an intriguing role for attention in carving out semantic coherence from local patch mosaics.

ICML 2025Oral
Mason Kamb et al.
9.4
3

Learning Linear Attention in Polynomial Time

Previous research has explored the expressivity of Transformer models in simulating Boolean circuits or Turing machines. However, the efficient learnability of Transformers from data has remained an open question. Our study addresses this gap by providing the first polynomial-time learnability results (specifically strong, agnostic PAC learning) for single-layer Transformers with linear attention. We show that learning the optimal multi head linear attention can be recast as finding the optimal kernel predictor in a suitably defined RKHS. Moving to generalization, we construct an algorithm that, given a dataset, checks in polynomial time whether the set of best fit multi head linear attention networks on this data all perform an identical computation--a powerful notion for out of distribution generalization. We empirically validate our theoretical findings on several canonical tasks: learning random linear attention networks, key--value associations, and learning to execute finite automata. Our findings bridge a critical gap between theoretical expressivity and learnability of Transformer models.

NeurIPS 2025Oral
Morris Yau et al.
9.3
3

Model Immunization from a Condition Number Perspective

Model immunization aims to pre-train models that are difficult to fine-tune on harmful tasks while retaining their utility on other non-harmful tasks. Though prior work has shown empirical evidence for immunizing text-to-image models, the key understanding of when immunization is possible and a precise definition of an immunized model remain unclear. In this work, we propose a framework, based on the condition number of a Hessian matrix, to analyze model immunization for linear models. Building on this framework, we design an algorithm with regularization terms to control the resulting condition numbers after pre-training. Empirical results on linear models and non-linear deep-nets demonstrate the effectiveness of the proposed algorithm on model immunization. The code is available at https://github.com/amberyzheng/model-immunization-cond-num.

ICML 2025Oral
Amber Yijia Zheng et al.
9.3
3

Learning with Expected Signatures: Theory and Applications

The expected signature maps a collection of data streams to a lower dimensional representation, with a remarkable property: the resulting feature tensor can fully characterize the data generating distribution. This "model-free"' embedding has been successfully leveraged to build multiple domain-agnostic machine learning (ML) algorithms for time series and sequential data. The convergence results proved in this paper bridge the gap between the expected signature's empirical discrete-time estimator and its theoretical continuous-time value, allowing for a more complete probabilistic interpretation of expected signature-based ML methods. Moreover, when the data generating process is a martingale, we suggest a simple modification of the expected signature estimator with significantly lower mean squared error and empirically demonstrate how it can be effectively applied to improve predictive performance.

ICML 2025Oral
Lorenzo Lucchese et al.
9.3
3

Strategy Coopetition Explains the Emergence and Transience of In-Context Learning

In-context learning (ICL) is a powerful ability that emerges in transformer models, enabling them to learn from context without weight updates. Recent work has established emergent ICL as a transient phenomenon that can sometimes disappear after long training times. In this work, we sought a mechanistic understanding of these transient dynamics. Firstly, we find that—after the disappearance of ICL—the asymptotic strategy is a remarkable hybrid between in-weights and in-context learning, which we term “context-constrained in-weights learning” (CIWL). CIWL is in competition with ICL, and eventually replaces it as the dominant strategy of the model (thus leading to ICL transience). However, we also find that the two competing strategies actually share sub-circuits, which gives rise to cooperative dynamics as well. For example, in our setup, ICL is unable to emerge quickly on its own, and can only be enabled through the simultaneous slow development of asymptotic CIWL. CIWL thus both cooperates and competes with ICL, a phenomenon we term “strategy coopetition”. We propose a minimal mathematical model that reproduces these key dynamics and interactions. Informed by this model, we were able to identify a setup where ICL is truly emergent and persistent.

ICML 2025Oral
Aaditya K Singh et al.
9.3
3

Flowing Datasets with Wasserstein over Wasserstein Gradient Flows

Many applications in machine learning involve data represented as probability distributions. The emergence of such data requires radically novel techniques to design tractable gradient flows on probability distributions over this type of (infinite-dimensional) objects. For instance, being able to flow labeled datasets is a core task for applications ranging from domain adaptation to transfer learning or dataset distillation. In this setting, we propose to represent each class by the associated conditional distribution of features, and to model the dataset as a mixture distribution supported on these classes (which are themselves probability distributions), meaning that labeled datasets can be seen as probability distributions over probability distributions. We endow this space with a metric structure from optimal transport, namely the Wasserstein over Wasserstein (WoW) distance, derive a differential structure on this space, and define WoW gradient flows. The latter enables to design dynamics over this space that decrease a given objective functional. We apply our framework to transfer learning and dataset distillation tasks, leveraging our gradient flow construction as well as novel tractable functionals that take the form of Maximum Mean Discrepancies with Sliced-Wasserstein based kernels between probability distributions.

ICML 2025Oral
Clément Bonet et al.
9.2
5

Simplifying, Stabilizing and Scaling Continuous-time Consistency Models

Consistency models (CMs) are a powerful class of diffusion-based generative models optimized for fast sampling. Most existing CMs are trained using discretized timesteps, which introduce additional hyperparameters and are prone to discretization errors. While continuous-time formulations can mitigate these issues, their success has been limited by training instability. To address this, we propose a simplified theoretical framework that unifies previous parameterizations of diffusion models and CMs, identifying the root causes of instability. Based on this analysis, we introduce key improvements in diffusion process parameterization, network architecture, and training objectives. These changes enable us to train continuous-time CMs at an unprecedented scale, reaching 1.5B parameters on ImageNet 512×512. Our proposed training algorithm, using only two sampling steps, achieves FID scores of 2.06 on CIFAR-10, 1.48 on ImageNet 64×64, and 1.88 on ImageNet 512×512, narrowing the gap in FID scores with the best existing diffusion models to within 10\%.

ICLR 2025Oral
Cheng Lu et al.
9.1
4

FlexOLMo: Open Language Models for Flexible Data Use

We introduce FlexOLMo, a new class of language models (LMs) that supports (1) distributed training without data sharing, where different model parameters are independently trained on private datasets, and (2) data-flexible inference, where these parameters along with their associated data can be easily included or excluded from model inferences with no further training. FlexOLMo employs a mixture-of-experts (MoE) architecture where each expert is trained independently on private datasets and later integrated through a new nonparametric routing without any joint training across datasets. FlexOLMo is trained on FLEXMIX, a corpus we curate comprising seven restricted sets, either real or realistic approximations, alongside publicly available datasets. We evaluate models with up to 37 billion parameters (20 billion active) on 31 diverse downstream tasks. We show that a general expert trained on public data can be effectively combined with independently trained experts from other data owners significantly benefiting from these restricted sets (an average 41% relative improvement) while allowing flexible opt-out at inference time (e.g., for users without appropriate licenses or permissions). Our approach also outperforms prior model merging methods by 10.1% on average and surpasses the standard MoE trained without data restrictions using the same training FLOPs. Altogether, FlexOLMo enables training on restricted data while keeping data local and supports fine-grained control of data access at inference.

NeurIPS 2025Spotlight
Weijia Shi et al.
9.1
4

OmniSync: Towards Universal Lip Synchronization via Diffusion Transformers

Lip synchronization is the task of aligning a speaker’s lip movements in video with corresponding speech audio, and it is essential for creating realistic, expressive video content. However, existing methods often rely on reference frames and masked-frame inpainting, which limit their robustness to identity consistency, pose variations, facial occlusions, and stylized content. In addition, since audio signals provide weaker conditioning than visual cues, lip shape leakage from the original video will affect lip sync quality. In this paper, we present OmniSync, a universal lip synchronization framework for diverse visual scenarios. Our approach introduces a mask-free training paradigm using Diffusion Transformer models for direct frame editing without explicit masks, enabling unlimited-duration inference while maintaining natural facial dynamics and preserving character identity. During inference, we propose a flow-matching-based progressive noise initialization to ensure pose and identity consistency, while allowing precise mouth-region editing. To address the weak conditioning signal of audio, we develop a Dynamic Spatiotemporal Classifier-Free Guidance (DS-CFG) mechanism that adaptively adjusts guidance strength over time and space. We also establish the AIGC-LipSync Benchmark, the first evaluation suite for lip synchronization in diverse AI-generated videos. Extensive experiments demonstrate that OmniSync significantly outperforms prior methods in both visual quality and lip sync accuracy, achieving superior results in both real-world and AI-generated videos.

NeurIPS 2025Spotlight
Ziqiao Peng et al.
9.1
4

Affine-Invariant Global Non-Asymptotic Convergence Analysis of BFGS under Self-Concordance

In this paper, we establish global non-asymptotic convergence guarantees for the BFGS quasi-Newton method without requiring strong convexity or the Lipschitz continuity of the gradient or Hessian. Instead, we consider the setting where the objective function is strictly convex and strongly self-concordant. For an arbitrary initial point and any arbitrary positive-definite initial Hessian approximation, we prove global linear and superlinear convergence guarantees for BFGS when the step size is determined using a line search scheme satisfying the weak Wolfe conditions. Moreover, all our global guarantees are affine-invariant, with the convergence rates depending solely on the initial error and the strongly self-concordant constant. Our results extend the global non-asymptotic convergence theory of BFGS beyond traditional assumptions and, for the first time, establish affine-invariant convergence guarantees—aligning with the inherent affine invariance of the BFGS method.

NeurIPS 2025Spotlight
Qiujiang Jin et al.
9.1
4

Corporate Needs You to Find the Difference: Revisiting Submodular and Supermodular Ratio Optimization Problems

We consider the following question: given a submodular or supermodular set function $f:2^V \to \mathbb{R}$, how should one minimize or maximize its average value $f(S)/|S|$ over non-empty subsets $S\subseteq V$? This problem generalizes several well-known objectives including Densest Subgraph (DSG), Densest Supermodular Set (DSS), and Submodular Function Minimization (SFM). Motivated by recent applications [39, 31], we formalize two new broad problems: the Unrestricted Sparsest Submodular Set (USSS) and Unrestricted Densest Supermodular Set (UDSS) which allow negative and non-monotone functions. Using classical results we observe that DSS, SFM, USSS, UDSS, and MNP are all equivalent under strongly polynomial-time reductions. This equivalence enables algorithmic cross-over: methods designed for one problem can be repurposed to solve others efficiently. In particular we use the perspective of the minimum norm point in the base polyhedron of a sub/supermodular function which, via Fujishige's results, yields the dense decomposition as a byproduct. Via this perspective we show that a recent converging heuristic for DSS, \textsc{SuperGreedy++} [15, 29], and Wolfe’s minimum norm point algorithm are both universal solvers for all of these problems. On the theoretical front, we explain the observation made in recent work [39, 31] that \textsc{SuperGreedy++} appears to work well even in settings beyond DSS. Surprisingly, we also show that this simple algorithm can be used for Submodular Function Minimization, including for example that it can act as an effective minimum $st$ cut algorithm. On the empirical front, we explore the utility of several different algorithms including Fujishige-Wolfe min-norm point algorithm for recent problems. We conduct over 400 experiments across seven problem types and large-scale synthetic and real-world datasets (up to $\approx 100$ million edges). Our results reveal that methods historically considered inefficient, such as convex-programming methods, flow-based solvers, and Fujishige-Wolfe’s algorithm, outperform state-of-the-art task-specific baselines by orders of magnitude on concrete problems like HNSN [39]. These findings challenge prevailing assumptions and demonstrate that with the right framing, general optimization algorithms can be both scalable and state-of-the-art for supermodular and submodular ratio problems.

NeurIPS 2025Spotlight
Elfarouk Harb et al.
9.1
4

Mesh-RFT: Enhancing Mesh Generation via Fine-grained Reinforcement Fine-Tuning

Existing pretrained models for 3D mesh generation often suffer from data biases and produce low-quality results, while global reinforcement learning (RL) methods rely on object-level rewards that struggle to capture local structure details. To address these challenges, we present $\textbf{Mesh-RFT}$, a novel fine-grained reinforcement fine-tuning framework that employs Masked Direct Preference Optimization (M-DPO) to enable localized refinement via quality-aware face masking. To facilitate efficient quality evaluation, we introduce an objective topology-aware scoring system to evaluate geometric integrity and topological regularity at both object and face levels through two metrics: Boundary Edge Ratio (BER) and Topology Score (TS). By integrating these metrics into a fine-grained RL strategy, Mesh-RFT becomes the first method to optimize mesh quality at the granularity of individual faces, resolving localized errors while preserving global coherence. Experiment results show that our M-DPO approach reduces Hausdorff Distance (HD) by 24.6\% and improves Topology Score (TS) by 3.8\% over pre-trained models, while outperforming global DPO methods with a 17.4\% HD reduction and 4.9\% TS gain. These results demonstrate Mesh-RFT’s ability to improve geometric integrity and topological regularity, achieving new state-of-the-art performance in production-ready mesh generation.

NeurIPS 2025Spotlight
Jian Liu et al.
9.1
4

KORGym: A Dynamic Game Platform for LLM Reasoning Evaluation

Recent advancements in large language models (LLMs) underscore the need for more comprehensive evaluation methods to accurately assess their reasoning capabilities. Existing benchmarks are often domain-specific and thus cannot fully capture an LLM’s general reasoning potential. To address this limitation, we introduce the **Knowledge Orthogonal Reasoning Gymnasium (KORGym)**, a dynamic evaluation platform inspired by KOR-Bench and Gymnasium. KORGym offers over fifty games in either textual or visual formats and supports interactive, multi-turn assessments with reinforcement learning scenarios. Using KORGym, we conduct extensive experiments on 19 LLMs and 8 VLMs, revealing consistent reasoning patterns within model families and demonstrating the superior performance of closed-source models. Further analysis examines the effects of modality, reasoning strategies, reinforcement learning techniques, and response length on model performance. We expect KORGym to become a valuable resource for advancing LLM reasoning research and developing evaluation methodologies suited to complex, interactive environments.

NeurIPS 2025Spotlight
Jiajun Shi et al.
9.1
4

Optimal Mistake Bounds for Transductive Online Learning

We resolve a 30-year-old open problem concerning the power of unlabeled data in online learning by tightly quantifying the gap between transductive and standard online learning. We prove that for every concept class $\mathcal{H}$ with Littlestone dimension $d$, the transductive mistake bound is at least $\Omega(\sqrt{d})$. This establishes an exponential improvement over previous lower bounds of $\Omega(\log \log d)$, $\Omega(\sqrt{\log d})$, and $\Omega(\log d)$, respectively due to Ben-David, Kushilevitz, and Mansour (1995, 1997) and Hanneke, Moran, and Shafer (2023). We also show that our bound is tight: for every $d$, there exists a class of Littlestone dimension $d$ with transductive mistake bound $O(\sqrt{d})$. Our upper bound also improves the previous best known upper bound of $(2/3) \cdot d$ from Ben-David et al. (1997). These results demonstrate a quadratic gap between transductive and standard online learning, thereby highlighting the benefit of advanced access to the unlabeled instance sequence. This stands in stark contrast to the PAC setting, where transductive and standard learning exhibit similar sample complexities.

NeurIPS 2025Oral
Zachary Chase et al.
9.1
4

PerceptionLM: Open-Access Data and Models for Detailed Visual Understanding

Vision-language models are integral to computer vision research, yet many high-performing models remain closed-source, obscuring their data, design and training recipe. The research community has responded by using distillation from black-box models to label training data, achieving strong benchmark results, at the cost of measurable scientific progress. However, without knowing the details of the teacher model and its data sources, scientific progress remains difficult to measure. In this paper, we study building a Perception Language Model (PLM) in a fully open and reproducible framework for transparent research in image and video understanding. We analyze standard training pipelines without distillation from proprietary models and explore large-scale synthetic data to identify critical data gaps, particularly in detailed video understanding. To bridge these gaps, we release 2.8M human-labeled instances of fine-grained video question-answer pairs and spatio-temporally grounded video captions. Additionally, we introduce PLM–VideoBench, a suite for evaluating challenging video understanding tasks focusing on the ability to reason about ''what'', ''where'', ''when'', and ''how'' of a video. We make our work fully reproducible by providing data, training recipes, code & models.

NeurIPS 2025Spotlight
Jang Hyun Cho et al.
9.0
4

The mechanistic basis of data dependence and abrupt learning in an in-context classification task

Transformer models exhibit in-context learning: the ability to accurately predict the response to a novel query based on illustrative examples in the input sequence, which contrasts with traditional in-weights learning of query-output relationships. What aspects of the training data distribution and architecture favor in-context vs in-weights learning? Recent work has shown that specific distributional properties inherent in language, such as burstiness, large dictionaries and skewed rank-frequency distributions, control the trade-off or simultaneous appearance of these two forms of learning. We first show that these results are recapitulated in a minimal attention-only network trained on a simplified dataset. In-context learning (ICL) is driven by the abrupt emergence of an induction head, which subsequently competes with in-weights learning. By identifying progress measures that precede in-context learning and targeted experiments, we construct a two-parameter model of an induction head which emulates the full data distributional dependencies displayed by the attention-based network. A phenomenological model of induction head formation traces its abrupt emergence to the sequential learning of three nested logits enabled by an intrinsic curriculum. We propose that the sharp transitions in attention-based networks arise due to a specific chain of multi-layer operations necessary to achieve ICL, which is implemented by nested nonlinearities sequentially learned during training.

ICLR 2024Oral
Gautam Reddy
9.0
4

Artificial Kuramoto Oscillatory Neurons

It has long been known in both neuroscience and AI that ``binding'' between neurons leads to a form of competitive learning where representations are compressed in order to represent more abstract concepts in deeper layers of the network. More recently, it was also hypothesized that dynamic (spatiotemporal) representations play an important role in both neuroscience and AI. Building on these ideas, we introduce Artificial Kuramoto Oscillatory Neurons (AKOrN) as a dynamical alternative to threshold units, which can be combined with arbitrary connectivity designs such as fully connected, convolutional, or attentive mechanisms. Our generalized Kuramoto updates bind neurons together through their synchronization dynamics. We show that this idea provides performance improvements across a wide spectrum of tasks such as unsupervised object discovery, adversarial robustness, calibrated uncertainty quantification, and reasoning. We believe that these empirical results show the importance of rethinking our assumptions at the most basic neuronal level of neural representation, and in particular show the importance of dynamical representations. Code: https://github.com/autonomousvision/akorn Project page: https://takerum.github.io/akorn_project_page/

ICLR 2025Oral
Takeru Miyato et al.

共 32,993 篇论文,第 1 / 1650 页